The Sine Rule

Your task is to put the 12 cards into the correct order to give the sine rule.

Therefore	$h=b \sin (C)$
For the right-angled triangle ABD	$h=c \sin (\mathrm{~B})$
Which can be rearranged to give	$\sin (B)=\frac{c}{h}$
Rearrange both expressions for sine to make h the subject.	$\frac{b}{\sin (B)}=\frac{c}{\sin (C)}$
With the triangle $A B C$, split it into two right angle triangles by creating point D,	$b \sin (C)=c \sin (B)$
For the right-angled triangle ACD	$\sin (\mathrm{C})=\frac{b}{h}$

The Cosine Rule

Your task is to put the 16 cards into the correct order to give the sine rule.

$b^{2}-a^{2}+2 a x-x^{2}=c^{2}-x^{2}$	Therefore
Using Pythagoras' Theorem on the right-angled triangle ABD	$b^{2}=a^{2}+c^{2}+2 a x$
$b^{2}=a^{2}+c^{2}+2 a b \cos (\mathrm{~B})$	$h^{2}=c^{2}-x^{2}$
$h^{2}=b^{2}-(a-x)^{2}$	
Rearrange both expressions to make h the subject.	$b^{2}-(a-x)^{2}=c^{2}-x^{2}$
With the triangle ABC, split it into two right angle triangles by creating point D, perpendicular to BC.	$b^{2}=h^{2}+(a-x)^{2}$
Using Pythagoras' Theorem on the right-angled triangle ACD	$b^{2}-a^{2}+2 a x=c^{2}$
For the right-angled triangle ABD	$x=c \cos (B)$
$b^{2}=a^{2}+c^{2}+2 a c \cos (B)$	$c^{2}=h^{2}+x^{2}$

